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Abstract

Solid-state NMR is a valuable technique for the study of disordered materials. Analysis of such spectra usually involves solution

of so-called ill-posed inverse problems. Here we present a strategy for the analysis of two-parameter two-dimensional NMR problems

and test it on 2D DECODER and DOQSY experiments. Using Monte Carlo tests, constraints are determined for the resolution and

accuracy of the analysis for both experiments. The methods are finally applied to spectra of spider dragline silk, a heterogeneous

solid fibrous protein.

� 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Solid-state nuclear magnetic resonance (NMR) is

able to study disordered and partially ordered materials

like glasses, zeolites, polymers, liquid crystals, and bio-

logical materials. In such materials the structural and

dynamical parameters are not sharply defined but

characterised by probability distribution functions

(PDFs) instead. Such distributions are mapped into
distributions of NMR parameters, such as the chemical

shift, the dipolar and the quadrupolar interaction, re-

laxation, spin-diffusion and exchange rates, and others.

The extraction of the structural information from

NMR spectra falls in the category of ill-posed inverse

problems. The solution of the direct problem (e.g., cal-

culation of the spectra from a parameter distribution) is

of course a prerequisite for solving the inverse problem
but is not sufficient for a unique solution. Strategies to

solve such problems are well established for several

fields [1–4] and have been applied to solid-state NMR

[5–14].

The selected NMR examples mentioned above are
concerned with one-dimensional inverse problems,

where a distribution in one parameter is extracted from

NMR data, which may be multi-dimensional. Two-di-

mensional inverse problems have been addressed to

determine distributions in chemical-shift and quadru-

polar parameters from MAS and MQMAS spectra in

inorganic disordered materials [15,16], determine distri-

butions in torsion angles and orientational angles in
polymers [17], and determine T1–T2 relaxation-time dis-
tributions in porous materials [18]. In this paper, we give

a full description of our attempts to extract distributions

in dihedral angles from DOQSY spectra of solid pro-

teins [19,20] and two-angle orientation distributions

from DECODER spectra [20].

From these comparatively few examples it is clear

that the potential of methods to address two-dimen-
sional inverse problems in solid-state NMR is signifi-

cant. The first part of this paper introduces the concepts

and notations used in this paper and the strategy for the

analysis of the two-dimensional (in parameter space)

problems. In the second part of this paper the applica-

tion of this approach will be demonstrated with two

practical examples, the 2D DOQSY and 2D DE-

CODER experiments, which were used to extract
structural information from natural silks. As silks are
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less than 30% crystalline a non-trivial distribution of
structural parameters is expected. The experimental data

of silk fibroins, presented in the final part of the paper,

indeed could not be explained by using a single narrow

distribution of the appropriate parameters.

2. Theory

2.1. Defining inverse problems and ill-posedness

To introduce and illustrate the definitions and the

notation important in the context of our approach to

inverse problems, we will use a simple one-dimensional

example illustrated in Fig. 1. We describe an NMR ex-
periment that yields a singleGaussian line, the position of

which is defined by a parameter h. Coexistence of n sites
with different hi generates a spectrum (see Fig. 1c) that is a

superposition of n lines, weighted by their relative abun-

dance gðhÞ. The spectrum sðxÞ is measured at m discrete

frequency points xj. The lineshape function Kðx; hÞ for
this experiment is calculated for the different values of hi
and xj, and gives a set of basis spectra (Fig. 1a). If the
abundances g are known, the spectrum s is given by

s ¼ Kg; ð1Þ
where s is the data vector ½s1; s2; . . . ; sm�T, g is the vector

½g1; g2; . . . ; gn�T of the relative abundances, and K is an

Fig. 1. An example NMR experiment was simulated with a spectrum dependent on one parameter h. The kernel (a) is the set of basis spectra covering
the parameter domain h. By defining an input distribution function (b), and by adding some Gaussian noise to the frequency domain, the spectrum

(c) was obtained. Note that hi is a discrete variable that covers the range of h, i.e., hi ¼ hmin þ ðhmax � hminÞ � ði� 1Þ=ðn� 1Þ with n the total number

of basis spectra (n ¼ 66 in this example). Reversing the procedure, i.e., determining a distribution function from a spectrum, using the known kernel,

was done by applying an unconstrained linear LS fit. (d) A strongly oscillatory solution was obtained then even though the fit (e) was excellent. This

demonstrates the smoothing properties of the kernel. Numerical details are given in Section 3.1.
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m	 n sized matrix whose columns correspond to the
basis spectra at ½h1; h2; . . . ; hn�. In practice one usually

wants to determine the abundances ~ggðhÞ from the

knowledge of the basis spectra in Kðx; hÞ and a mea-

sured spectrum ~ssðxÞ. A least-squares (LS) approach

minimizes the discrepancy between the measured and a

simulated spectrum, according to

kK~gg � ~ssk2 ! min ! ð2Þ
Using the arbitrarily chosen distribution function gðhÞ

from Fig. 1b, the spectrum ~ssðxÞ of Fig. 1c was obtained,
by adding some Gaussian noise to the model spectrum

sðxÞ. Fig. 1e shows the result of an unconstrained linear

LS fit of spectrum ~ssðxÞ. The fit is excellent indeed, but the
obtained output distribution function ~ggðhÞ (Fig. 1d) is
different from the input distribution gðhÞ.

The continuous version of Eq. (1), K̂Kðx; hÞgðhÞ ¼
sðxÞ, can be stated as a Fredholm integral equation of

the first kind:

sðxÞ ¼ K̂Kðx; hÞgðhÞ ¼
Z

h
gðhÞKðx; hÞdh; ð3Þ

i.e., the distribution function gðhÞ is mapped linearly

onto the spectrum sðxÞ. x and h may assign one- or

multi-dimensional spectral and parameter domains, i.e.,

h ¼ fhð1Þ; hð2Þ; . . . ; hðxÞg and x ¼ fxð1Þ;xð2Þ; . . . ;xðyÞg,
and Eq. (3) covers one- and multi-dimensional cases.

The integral kernel Kðx; hÞ coincides with the spectrum

sðxÞ resulting from a sharply defined value h. gðhÞ is

normalised according to
R

h gðhÞdh ¼ 1 and represents

the probability of finding values of the parameter(s) h
within the interval ½½hð1Þ; hð1Þ þ dhð1Þ�; ½hð2Þ; hð2Þ þ dhð2Þ�;
½. . .�; ½hðxÞ; hðxÞ þ dhðxÞ��.

It is well known though that Fredholm integral equa-
tions of the first kind are ill-posed in the sense of Had-

amard [21]. In particular, for experimental data ~ssðxÞ the
formal solution of [3], gðhÞ ¼ K̂Kðx; hÞ�1sðxÞ, never exists
because the operator K̂Kðx; hÞ will not describe the noise
or systematic measurement errors. We, therefore, write

~ssðxÞ ¼ K̂Kðx; hÞgðhÞ þ rðxÞ; ð4Þ

where ideally rðxÞ describes white noise, but may also

include deterministic errors. In this case, the pseudo-in-

verse operator K̂Kyðx; hÞ provides a generalised solution
~ggðhÞ ¼ K̂Kyðx; hÞ~ssðxÞ, which in the discrete case corre-

sponds to the LS solution [22]

kK̂Kðx; hÞ~ggðhÞ � ~ssðxÞk2 ! min ! ð5Þ

Lack of uniqueness results in the coexistence of sev-

eral solutions ~ggiðhÞ ð~ggiðhÞ 6¼ ~ggjðhÞ if i 6¼ jÞ), with equiv-

alent misfits for a given spectrum ~ssðxÞ. This is clearly
seen in Fig. 1 where the distributions in (b) and (d) both

lead to virtually the same ~ssðxÞ.
Besides non-uniqueness of the solution, lack of sta-

bility is often encountered in ill-posed problems. This is
also seen in the example of Fig. 1: from the close

proximity, in the spectral data space one cannot con-
clude on the close proximity of the corresponding gen-

erating functions ~gg1ðhÞ and ~gg2ðhÞ: the fact that
kK̂Kðx; hÞ~gg1ðhÞ � K̂Kðx; hÞ~gg2ðhÞk ¼ k~ss1ðxÞ � ~ss2ðxÞk ð6Þ
is a small number does not guarantee that the norm

k~gg1ðhÞ � ~gg2ðhÞk ð7Þ
is small as well.

Lack of uniqueness and stability causes that ill-posed
inverse problems, in general, have many solutions with

similar misfit, within the signal-to-noise, which may

look completely different. This fundamental problem

can only be solved by adding additional information, as

a side constraint, to obtain a unique and stable solution.

2.2. Analysis and evaluation of the ill-posed problem

2.2.1. Singular values

The ill-posedness of a problem can be characterised

numerically by applying a singular value expansion

(SVE) [1] to the kernel K. This infinite series expansion

into orthogonal functions uðxÞ and vðhÞ is defined as

Kðx; hÞ ¼
X1
l¼1

glulðxÞvlðhÞ: ð8Þ

The singular values gl and the singular functions ulðxÞ
and vlðhÞ are related via

R
h Kðx; hÞvlðhÞdh ¼ glulðxÞ. In

the discrete case they are a generalization of the eigen-
values of a square matrix. By projecting the spectrum

onto the singular functions the solution to the LS

problem of Eq. (5) can be rewritten as

~ggðhÞ ¼
X1
l¼1

1

gl
ulðxÞ; ~ssðxÞ

� �
vlðhÞ: ð9Þ

Here ð�; �Þ denotes the scalar product. Assuming ~gg1ðhÞ
and ~gg2ðhÞ to be the distributions producing the spectra
~ss1ðxÞ and ~ss2ðxÞ, the LS discrepancy in the parameter

domain is

k~gg1ðhÞ � ~gg2ðhÞk
2 ¼

X1
l¼1

1

g2l
ðulðxÞ; ~ss1ðxÞ � ~ss2ðxÞÞ2: ð10Þ

Small singular values gl thus lead to a dramatic error
amplification by even the smallest differences in the

spectra, as was observed in the example of Fig. 1. The

decay of the singular values thus provides a measure for

ill-posedness. A problem can be roughly classified to be

modestly ill-posed if the gl decay like l
�y (with y a posi-

tive real number) and severely ill-posed if an e�l-behav-

iour is observed. The condition number, defined as the

ratio between the highest and lowest singular value, may
be used as an indication of the severity of ill-posedness.

2.2.2. Correlations

The decay of the singular values is determined by the

degree of correlation between the subfunctions Kðx; h1Þ
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Fig. 2. Regularization increases the stability of ill-posed problems, independently of the approach. (a) The L-plot [1] shows the effects of four different regularization approaches: discretization,

truncation, Tikhonov regularization (demanding a smooth solution), and non-negativity (NNLS algorithm). With increasing regularization the norm of the solution k~ggðhÞk decreases while the

discrepancy between spectrum and fit, k~ssðxÞ � Kðx; hÞ~ggðhÞk, increases. The enlarged detail shows the sharp bend in all curves. (b) For Tikhonov regularization the application of the discrepancy

principle [48] for the determination of the regularization parameter is shown. (c) Eight examples of various degrees of regularization: 0 without regularization the result of Fig. 1 is obtained using all

four approaches (66 basis spectra). Changed for each particular example was: 1 grid density lowered to 50 basis spectra, 2 grid density lowered to 29 basis spectra, 3 series truncated for l > 44, 4
series truncated for l > 16, 5 Tikhonov with k ¼ 6:1 � 10�3, 6 Tikhonov with k ¼ 2:19, and 7 imposing non-negativity. Situations 4 and 6 demonstrate that too much regularization yields an

oversmoothed solution. Situation 8 shows the result of applying the SC method to determine the regularization parameter.
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and Kðx; h2Þ, which coincide with the basis spectra at h1
and h2. We characterize the correlation between two

functions by the cosine of the angle between the re-

spective functions, i.e.,

Cpq ¼
ðKp;KqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðKp;KpÞðKq;KqÞ
p ¼ cosðanglepqÞ; ð11Þ

where Ku ¼ Kðx; huÞ. It should be noted that the corre-

lation in the example of Fig. 1 is low, and the example is

not very strongly ill-posed.

2.3. Regularization

A meaningful solution of the inverse problem re-

quires that we enforce that k~gg1ðhÞ � ~gg2ðhÞk becomes

small, if k~ss1ðxÞ � ~ss2ðxÞk is small. This is done here by a
regularization approach. Regularization can realised by

extending the minimization problem, defined in Eq. (5),

with extra constraint(s), L̂Lð~ggðhÞÞ, i.e.,

kK̂Kðx; hÞ~ggðhÞ � ~ssðxÞk2 þ kL̂Lð~ggðhÞÞ ! min ! ð12Þ

Here the operator L̂Lð~ggðhÞÞ represents the extra con-

straints to be minimised, e.g., the norm or the second

derivative of the solution ~ggðhÞ, or an entropy function as is
used in maximum-entropy methods [1]. Choosing a

proper value for k is important as it determines the bal-

ance of the discrepancy between fit and data (quality of
the fit) and the importance of the additional constraint(s).

Fig. 2 shows the effect of four different regularization

approaches applied to the example of Fig. 1:

2.3.1. Discretization

Discretization (gridding) of the parameter domain

already provides regularization. It means that the con-

tinuous functional of Eq. (3) is approximated by

sðxjÞ ¼
Xn

i¼1
Kðxj; hiÞgðhiÞDðhiÞ ð13Þ

using a discrete grid hi and xj. DðhiÞ denotes the (vari-
able) interval size at hi.

The singular value decomposition (SVD) of the ma-

trix K is given by

K ¼ UWV T: ð14Þ
Here U is an m	 n sized column-orthogonal matrix, W

an n	 n sized diagonal matrix with the singular values

wl as its elements, and V is an n	 n sized orthonormal

matrix. This modifies the linear LS fit of Eq. (9) to

~ggðhÞ ¼
Xn

i¼1

1

wl
vl � uTl � ~ss ð15Þ

with n is the number of basis spectra in the kernel and ul,
vl columns of U and V. By decreasing the grid density,
i.e., keep n small, oscillations of ~ggðhÞ can be blocked.

The regulatory effect of decreasing the grid resolution

can be seen from situations 1 and 2 in Fig. 2. Note that
not only the grid density in the parameter domain is of

importance. Inappropriate selection of the discrete

points in the parameter domain may change the condi-

tion number by many orders of magnitude.

2.3.2. Truncation

Alternatively to using a lower grid density one may use

the same grid but truncate the series of Eq. (15) at a certain
threshold nthreshold < n, because this blocks high-fre-

quency components in the spectral domain. This enforces

a smoother solution, which is illustrated by situations 3

and 4 . This approach still has a discrete step size but

this is usually smaller than for discretization. Note the

appearance of significant deviations between spectrum

and fit for strong regularization in situation 4 .

2.3.3. Smoothness

A more intuitive method than truncation is the en-

forcement of smoothness of ~ggðhÞ, as this blocks the os-
cillations in the parameter domain directly. There are

many ways of modelling smoothness, but here we dis-

cuss Tikhonov regularization [23] where smoothness is

realised by asking for a small norm of ~ggðhÞ leading to the
problem

kK̂Kðx; hÞ~ggðhÞ � ~ssðxÞk2 þ kkL̂L~ggðhÞk2 ! min ! ð16Þ
where L̂L is the unity operator. Tikhonov–Phillips regu-

larization is a closely related approach that enforces

smoothness, with L̂L then being the operator of the sec-

ond derivative [24].

The constraint of a small norm modifies Eq. (15) to

~ggkðhÞ ¼
Xn

i¼1

wl

ðw2
l þ kÞ vl � u

T
l � ~ss; ð17Þ

i.e., the 1=wl-dependence has become wl=ðw2
l þ kÞ, which

means a reduction of the weight of the high-order sin-

gular values (situations 5 and 6 ). Note that the choice

of k is not bound to discrete steps.

2.3.4. Non-negativity and other

Enforcing a positive result for ~ggðhÞ also improves

stability as is shown by situation 7 . Finally, in addition
to the regularization schemes here, many others have

been discussed. and for brevity we refer to [1,24] and

references therein.

2.4. Determining the optimum degree of regularization

The best choice of the regularization parameter is

such, that it is as large as possible but that it still leads
only to a minimal increase in the discrepancy k~ssðxÞ�
K̂Kðx; hÞ~ggðhÞk. The discrepancy, as a function of the reg-

ularization parameter can be visualised either in the

L-plot or the discrepancy plot [1]. The L-plot shows,
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in a double-logarithmic fashion, the discrepancy as a
function of the norm of the regularization term, kL̂L~ggðhÞk
(Fig. 2a), while the discrepancy-plot shows the discrep-

ancy directly as a function of the regularization param-

eter k (for Tikhonov regularization). The best balance

between the constraints and the discrepancy is found

around the sharp edge for both the L-curve and the

discrepancy method.

Alternatively to using a discrepancy in the spectral
domain, it is possible to define a discrepancy in the

parameter domain. In the context of this work we apply

the self-consistency method (SC-method) [25,26] which
can be used to estimate both the noise level r and the

optimum regularization parameter k. The result of ap-
plying the SC method is shown by situation 8 in Fig. 2.

2.5. Two-dimensional Fredholm equations of the first kind

In the following we want to specifically address the

extraction of a distribution of two parameters, e.g., a and
b, from a two-dimensional (2D) NMR spectrum. Spe-

cifically, we discuss the analysis of two static 2D CSA–

Fig. 3. (a) A 2D DECODER spectrum was simulated using (b) the input distribution with a 5� grid resolution. Gaussian noise was added to the

frequency domain. Panel c shows the PDF as obtained from an unconstrained linear LS fit. A highly similar result is obtained when applying virtually

no truncation or Tikhonov regularization. Panels d and e show the effect of decreasing the grid resolution to 10� and 30�, respectively. Panel f and g
show the effect of truncating Eq. (15) after l > 171 and l > 121 (of 361), respectively. Finally panels h and j show the effect of Tikhonov regular-

ization with k ¼ 6:55 and k ¼ 1:68e3, respectively. The SC method used in this work estimates kopt ¼ 12:74. All three regularization approaches must

be applied with care to avoid oversmoothing of the result as demonstrated by e, g, and j. Note the PDF is plotted using a polar projection of aF and

bF . A uniform distribution (no orientation) would show a uniformly coloured plot. Numerical details are given in the methods section (Example 2).
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CSA correlation experiments, DECODER [27–30], and
DOQSY [31,32]. The extension from the one-parameter

1D problem to a two-parameter 2D problem can increase

the complexity of the problem considerably. The number

of parameters and spectral data points are in general

approximately squared, correlations may be unevenly

spread across the two-dimensional parameter domain

and, depending on the algorithm, the size of the problem

may induce numerical errors, for example when many
orthogonal transformations are calculated. The princi-

ples of regularization still hold, however, and the same

approaches can be used as for one-parameter problems.

This is demonstrated in the example of Fig. 3. An orien-

tation distribution function gða; bÞ was created (Fig. 3b)

and the corresponding 2D DECODER experiment,

which is described in more detail below, calculated, and

some noise added. Fig. 3c shows the result of an uncon-
strained linear LS fit. As predicted by theory, the solution

is dominated by strong oscillations. The result of the ap-

plication of either reducing the discretization resolution,

truncation, or Tikhonov regularization to the problem

(Fig. 3d–j) leads to amore stable solution. This shows that

the two-parameter 2D problem basically responds iden-

tical to the one-parameter 1D NMR problem of Fig. 2.

2.6. Solution concept and discrete implementation

The previous sections have shown various ap-

proaches that can help to solve ill-posed problems, all

with similar effects but of different strength and based on

different assumptions. Some of these approaches can

also be combined in order to achieve better results. In

the following, we want to demonstrate the effect of ap-
plying the combination of (1) a well-chosen discretiza-

tion, (2) Tikhonov regularization, and (3) non-

negativity, combined into a single linear LS algorithm,

to two-parameter 2D NMR problems. The combination

performs better, and is more flexible, than using a single

scheme, in particular for severely ill-posed problems.

The earlier work of Utz [17], on a similar regularization

problem, used a truncation approach for regularization.
First, we define the problem by rewriting Eq. (3) into

s xð1Þ;xð2Þ� 	
¼

Z
a;b

gða; bÞKðxð1Þ;xð2Þ; a; bÞdadb: ð18Þ

The spectrum is discretised into a finite number of m

noisy data points, ~ssk; k ¼ 1; . . . ;m, using a Fourier

transform, with

~ssk ¼ sðxð1Þ
k ;xð2Þ

k Þ þ rk ð19Þ
and where rk is given by

rk ¼ rek; ð20Þ
ek is a vector containing noise of a given type, e.g.,
Gaussian, and r is a scaling factor. For simplicity we

assume no systematic errors. Including the Euclidean

norm of g as an additional constraint into the least-
squares problem yields, according to Eq. (16),

Xm
k¼1

1

r2
k

~ssk



�

Z
a;b

Kðxð1Þ
k ;x�ð2Þ

k ; a; bÞ~ggða; bÞdadb
�2

þkk~ggk2 ! min ! ð21Þ

In the next step we discretize the integral equation

and the regularization term. A natural discretization was

defined already by the grid points in the spectral domain

due to the discrete sampling and subsequent Fourier
transform. Hence, a further discretization scheme had to

be introduced for the parameter domain only. This was

done using linear splines such that, within the intervals

½½ai; aiþ1�; ½bj; bjþ1��, gða; bÞ is approximated by functions
that are piecewise linear in a and b, i.e., gða; bÞ ffi
�ggi;jða; bÞ, according to

�ggi;jða; bÞ ¼ cð1Þij ða; bÞ~ggi;j þ cð2Þij ða; bÞ~ggiþ1;j
þ cð3Þij ða; bÞ~ggi;jþ1 þ cð4Þij ða; bÞ~ggiþ1;jþ1; ð22Þ

where i ¼ 1; . . . ; ðna � 1Þ; j ¼ 1; . . . ; ðnb � 1Þ, ~gg is the

discrete solution vector and

cð1Þij ða;bÞ ¼
aiþ1 � a
aiþ1 � ai

� 

�

bjþ1 � b

bjþ1 � bi

" #
;

cð2Þij ða;bÞ ¼
a � ai

aiþ1 � ai

� 

�

bjþ1 � b

bjþ1 � bj

" #
;

cð3Þij ða;bÞ ¼
aiþ1 � a
aiþ1 � ai

� 

�

b � bj

bjþ1 � bj

" #
;

cð4Þij ða;bÞ ¼
a � ai

aiþ1 � ai

� 

�

b � bj

bjþ1 � bj

" #
:

ð23Þ

The spectrum ~ssk was thus approximated by a sum of

basis spectra over the intervals ½½ai; aiþ1�; ½bj; bjþ1��, using
the functions ~ggi;jða; bÞ, given by

~ssk ¼
Xnb

j¼1

Xna

i¼1
Kijðxð1Þ

k ;xð2Þ
k Þ~ggij; ð24Þ

where Kijðxð1Þ
k ;xð2Þ

k Þ is the basis spectrum belonging to
the ijth element of the solution vector at frequency

ðxð1Þ
k ;xð2Þ

k Þ. The full derivation of Eq. (24) and the exact

definitions of the spectra Kijðxð1Þ
k ;xð2Þ

k Þ are given in

Appendix A.

Finally, we can rewrite the LS problem into the ma-

trix equation

vðkÞ ¼ kK~gg � ~ssk2 þ k2k~ggk2: ð25Þ

Here ~ss is the data vector ½~ss1; ~ss2; . . . ~ssm�T, ~gg is the wanted

distribution vector ½~gg1; ~gg2; . . . ~ggn�
T
; n ¼ nanb, and the

m	 n sized matrix K is the discretised version of the

integral kernel. Note that the double index of ~ggij was
transferred into a single index such that ~ggl ¼ ~ggij with
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l ¼ naðj� 1Þ þ i. The numerical minimization of Eq.
(25) follows the strategy outlined by Weese [26]. Both

the regularization parameter k and the noise level r were

estimated using the SC method. Non-negativity was

implemented using the NNLS algorithm [22] and SVD

as suggested in [33]. All matrix transformations were

based on stable Householder transformations and Gi-

vens rotations according to [34].

2.7. Experiment 1: 2D DECODER

In the 2D DECODER experiment the principal axis

of anisotropic interactions (such as chemical-shift an-

isotropy, dipolar, or quadrupolar interactions) are de-

termined with respect to the static magnetic-field

direction. For this purpose, the orientation of the sam-

ple in the field is mechanically altered during the mixing
time of the 2D experiment [27–30]. Typically one is in-

terested in the relative orientation of an interaction

tensor towards a sample-fixed coordinate system, e.g.,

the fibre direction, a crystal axis or towards the axis of

deformation in a deformed block of polymeric material,

and not towards the magnetic field. It is therefore useful

to define one or more intermediate coordinate systems

between principal axis system (PAS) and the lab frame
(LAB), of which only one is of unknown orientation.

In the present case we wanted to investigate the ori-

entation of the chemical-shift anisotropy tensor towards

the fibre axis in a uni-axially oriented fibrous sample. By

defining a fibre-axis system (FAS), with its z-axis along

the fibre direction, the chemical shift tensor in the LAB

frame is given by

rLAB ¼ RLðaL; bL; cLÞ � RF ðaF ; bF ; cF Þ � rPAS

� RT
F ðaF ; bF ; cF Þ � RT

L ðaL; bL; cLÞ; ð26Þ

where RL and RF are the Euler rotation matrices de-

scribing the transformations from FAS to the LAB and

from the PAS to the FAS, respectively. For the Euler

rotations the convention of [35] was used. Note that the

angle aF determines the angle of the 13C@O CSA tensor

towards the fibre direction, i.e., if aF ¼ 0 then the C@O
vector is approximately perpendicular to the fibre di-

rection. bF specifies the angle of the peptide plane nor-

mal towards the fibre direction, i.e., if bF ¼ 0 then the

normal is parallel to the fibre. In the absence of other

interactions, the 2D DECODER spectrum, for a single

fixed choice of RL and RF , is determined by a two-di-

mensional delta function

sðxð1Þ;xð2ÞÞ ¼ dðxðXð1ÞÞ � xð1Þ;xðXð2ÞÞ � xð2ÞÞ; ð27Þ

with Xð1Þ ¼ ðað1Þ
L ; bð1Þ

L ; cð1ÞL ; aF ; bF ; cF Þ and Xð2Þ ¼ ðað2Þ
L ; bð2Þ

L ;
cð2ÞL ; aF ; bF ; cF Þ. Often, though not necessarily so [30], the

change of sample orientation is achieved by a mechan-

ical rotation bL around an axis perpendicular to the

magnetic field. Defining this axis to be the y-axis of the
LAB yields aL ¼ 0 and cL ¼ 0. In case of fibre symmetry

the angle cF is randomly distributed and must be inte-

grated over. The angles aF and bF are distributed ac-

cording to the distribution function gðaF ; bF Þ, which give
the abundances of the corresponding tensor orientations

towards the fibre, and the spectrum is thus described by

sðxð1Þ;xð2ÞÞ ¼
Z

aF

Z
bF

gðaF ; bF Þ

	
Z

cF

Kðxð1Þ;xð2Þ; bð1Þ
L ; bð2Þ

L ; aF ; bF ; cF ÞdcF

	 sin bF dbF daF : ð28Þ

Thefibre symmetrymakes that theNMRspectrum is fully

described by the parameter ranges aF ¼ ½0�; 90�� and
bF ¼ ½0�; 90��. All other orientations are related by sym-

metry. The exact coefficients for the discretised equation,

corresponding to Eq. (24), are given in Appendix A.

2.8. Experiment 2: DOQSY

In the 2D DOQSY experiment the double-quantum

spectrum of two dipolar-coupled spins is correlated to

the respective single-quantum spectra. This experiment

has initially been used to determine a molecular torsion

angle around two covalently bonded atoms [31,32]. Re-

cently we have applied the experiment to solid silk pro-

teins, labelled at the carbonyl functionality, to

simultaneously extract the distribution of the backbone
torsion angles ð/;wÞ [19,20]. The relative orientation of

the two CSA tensors can be in principle uniquely de-

scribed, bar symmetry-related solutions in the NMR

experiment, by a single Euler rotation Rða; b; cÞ. As-
suming that one knows the orientation of the CSA tensor

in the molecular frame, and that only spin pairs of C@O
groups neighbouring in the chain contribute to the

spectrum, the backbone torsion angles (/;w;x) may be
obtained, if the spectrum is sensitive to changes in these

angles [19]. Thus

R1!2 ¼ RT
MOL;2ða2; b2; c2Þ � Cð/;w;xÞ

� RMOL;1ða1; b1; c1Þ; ð29Þ

where RMOL;1 and RMOL;2 are the Euler rotation matrices
to go from the PAS to the respective molecular frame for

both spins. From literature the orientation of the PAS in

the peptide is approximately known [36–39] and an av-

erage value can be used, if the effects on the analysis are

small. In the following we assumed that the r33 compo-

nent is perpendicular to the peptide plane and the r22

component is almost along the C@O bond, with a 5�
deviation away from the C–N bond. The implication of
these assumptions will be described elsewhere [40].

Note that the Euler rotation Cð/;w;xÞ depends not
only on the torsion angles (/;w;x) but also on the
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standard peptide geometry. The geometry of a dipeptide
unit is generally considered to be well known. The

torsion angle x is the rotation around the C–N bond in

the amide bond and is close to 180�. From a search

through 11,876 protein and enzyme crystal structures,

determined by X-ray [41], a Lorentzian distribution

around 180.1� with a full width at half height (FWHH)

of 2.8� was found [40]. The assumption to keep x fixed

at 180� will therefore not perturb the analysis. This
means that the spectrum is described by a two-param-

eter distribution function gð/;wÞ according to

sðxð1Þ;xð2ÞÞ

¼
Z

w

Z
/
gð/;wÞKðxð1Þ;xð2Þ;/;w;a1;b1;c1;a2;b2;c2Þd/dw:

ð30Þ

The exact coefficients for the discretised equation, cor-

responding to Eq. (24), are given in Appendix A.

3. Materials and methods

3.1. Example 1

The convolution kernelKwas created by calculating 66

spectra of 235 points in length with a Gaussian line

(FWHH¼ 11 points) centred at point 20 in the first col-

umn, and subsequently shifted by 3 points every next
column. The input distribution gwas generatedwith three

Gaussians of 66 points in length, centred at points 20, 30,

and 54, and with FWHH of 12, 5, and 10 points, respec-

tively. Themaximumof gwas set to 1. The spectrum swas

obtained from the matrix multiplication of K and g.

Gaussian noise with amaximumamplitude of�0.025was
added. By increasing the increment in the shift of the

centre of the Gaussian to 4, 5, 6, and 7 points, the size of
the parameter domain was decreased to 50, 40, 34, and 29

points, respectively (see also Fig. 2).

3.2. Example 2

A DECODER spectrum was calculated for a CSA

tensor with values ðd11; d22; d33Þ ¼ ð241; 178; 96ÞPPM,

using the same parameters for the integration scheme as
given below in Section 3.3. The probability for the ori-

entation ðaF ; bF Þ was defined to be a two-dimensional

Gaussian distribution function centred at 40� and 50� in
the aF and bF dimensions, respectively, with FWHH¼
40� in both dimensions. Line broadening was applied in

the time domain by multiplying with a 2D Gaussian

(FWHH¼ 20 points). Gaussian noise was added to the

spectrum resulting in a signal-to-noise ratio of 113.6
(signal maximum divided by the standard deviation of

the noise). For the analysis the spectrum was reduced to

183	 183 points, enclosing the range ½28; 210�PPM.

3.3. Analysis

DECODER and DOQSY spectra were calculated in

frequency space using the GAMMA C++ simulation

environment [42]. DECODER spectra Kijðxð1Þ
k ;xð2Þ

k Þ (see
also Appendix A) were calculated on a frequency grid of

1 PPM/point. Each interval ½½ai; aiþ1�; ½bj; bjþ1�� was inte-
grated using a two-point Gaussian quadrature scheme

and a 1� resolution, leading to an approximate 0.5� res-
olution, effectively. To integrate over cF the composite

trapezium rule was used, with 1024 steps per 360�. To
improve the numerical stability all spectra were mini-

mised in size by taking away points outside the spectral

range of the DECODER experiment. Furthermore, all

basis spectra Ki1ðxð1Þ
k ;xð2Þ

k Þ, i.e., all which include bF ¼ 0,

were added and put into the kernel as a single basis

spectrum, because close to bF ¼ 0 the spectra are virtually
independent of aF .

DOQSY spectra Kijðxð1Þ
k ;xð2Þ

k Þ were calculated on a

frequency grid of 1 PPM/point with 17710 powder ori-

entations per conformation (/;w), using the method by

Cheng [43]. Each interval ½½wi;wiþ1�; ½/j;/jþ1�� was in-

tegrated using a two-point Gaussian quadrature scheme

and 5� resolution, leading to an approximate 2.5� reso-
lution, effectively. The frequency-domain simulations
were corrected a posteriori for finite RF pulse strengths,

which was not included in the frequency-space simula-

tions. It was shown using full quantum dynamical sim-

ulations that this provides, in approximation, a good

description of the excitation profile of the pulse sequence

[40]. After adding line broadening, every second point

was taken from the spectra to obtain a 2 PPM/point

resolution. To increase the stability of the analysis, it
was necessary to take away all points around the spec-

tral range of the DOQSY experiment, thus resulting in a

non-rectangular frequency grid.

All spectra have been fitted using a regularization

algorithm, written in C. Its reliability has been exten-

sively tested using Monte Carlo studies and it has been

successfully applied previously to various other Fred-

holm integral equations of the first kind [7,8,10,13,
44,45]. For DECODER spectra with a 10� grid reso-

lution (91 basis spectra, 33489 spectral points) typical

fitting times were about 25 s. DOQSY spectra, with a

15� resolution (290 basis spectra, 9183 spectral points),

needed approximately 1min on a SUN workstation

with a single Ultrasparc 2 processor. Note that the

fitting time is determined by the character of the dis-

tribution due to the iterative nature of the NNLS al-
gorithm. Different distributions may therefore take

longer.

3.4. NMR spectra

NMR spectra were obtained at room temperature on

a Bruker DMX 400 spectrometer. The DOQSY spectra
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presented are the same as discussed in [20]. 1D and 2D

DECODER spectra of oriented dragline silk were ob-

tained using a homebuilt switched-angle probe setup.

Typical RF fields were 50 kHz on both channels. Sample

reorientation was done with 2500 �/s and a minimum of

60ms, including flip, was needed for the stator to sta-

bilize. The total measuring time per spectrum was up to

7 days for samples of approximately 30mg, using block
acquisition to average the effects of long-term instabili-

ties. Spectra were calibrated using a 1D MAS spectrum

of adamantane, with peaks centred at 38.6 and

29.5 PPM, respectively [46], and processed using the

matNMR [47] processing package.

4. Analysing the experiments

4.1. Kernels

The discretization scheme for both kernels can now

be investigated and compared. The DECODER exper-

iment, Eq. (28), represents a set of integral equations

due to its flexibility in the choice of the reorientation of

the sample, defined by the angles bð1Þ
L and bð2Þ

L . Minimum

Fig. 4. Singular value plots for (a) four differentDECODERexperiments

and a grid resolutionof 10�, (b) aDECODER90� ! 45� experiment and
four grid resolutions, and (c) the DOQSY experiment on proteins for

four grid resolutions.CSAvalues as typically found for 13C@Otensors in

proteins, ðd11; d22; d33Þ ¼ ð241; 178; 96ÞPPM, were used.

Fig. 5. Angle plots for (a) a DECODER 90� ! 45� experiment and (b)
a DECODER 0� ! 90� experiment both for a grid resolution of 10�.
An angle denotes the degree of correlation between two basis spectra

as given by Eq. (11). Each large block corresponds to a value for bF

and is subdivided in 10 values for aF . Panel c shows the angle plot for a
DOQSY experiment with a grid resolution of 15�. Due to the inherent

symmetry sð/;wÞ ¼ sð�/;�wÞ the range for / was limited to

½�180�; . . . ; 0��. The remaining symmetry-related conformations, visi-

ble in the upper right and bottom left squares (angle is 0�), have been
left in the angle plots for plotting convenience. Each large block thus

corresponds to a value for / and is subdivided in 24 values for w.
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ill-posedness can, in principle, be achieved by the opti-
mum choice of the reorientation angles, although only

small differences are observed in practice (Fig. 4a).

Roughly qualified, the experiment is modestly ill-posed,

except for the high-order singular values, which show

strong ill-posedness. This can be explained, in part, by

the discretization scheme. For reasons related to the

linear interpolation, the discretization was linear despite

the fact that both aF and bF are polar angles. For small
values of bF the effect of aF on the spectrum is very

small, creating an artificially high resolution in aF in the

kernel and thus a strong decay in the singular values.

The analysis was improved, however, by adding all

spectra with bF ¼ 0 to a single basis spectrum. This

decreased the condition number by almost two orders of

magnitude (see also Fig. 10). Better sampling schemes,

adapted to the geometry of a sphere, would probably
yield a more homogeneous mapping of the parameter

domain. For a given choice of the reorientation angles

the resolution of the discretization scheme must be op-

timised. The best value is determined by the Monte

Carlo tests described below. Fig. 4b shows the singular

values for a DECODER 90� ! 45� experiment for four
discretization grid resolutions. A higher resolution dra-

matically increases the number of basis spectra and the
condition number.

Fig. 4c shows the singular value plot for a DOQSY

kernel for four grid resolutions. All symmetry-related

conformations were removed from the kernel. The decay

is generally faster than for DECODER and the condi-

tion number is more than an order of magnitude larger,

for a comparable grid resolution. The differences be-

tween the DECODER and DOQSY experiments can be
observed even more clearly from the corresponding

angle plots in Fig. 5. For DECODER the correlation

decreases with relative distance of the columns, although

typically for values of bF < 20� this does not hold. Clear
differences between DECODER experiments with dif-

ferent reorientation angles were also observed and

confirm the singular value plots. For example, the

0� ! 90� experiment (Fig. 5a) shows lower correlations
for bF > 20� but much higher for bF < 20�, compared to
the 90� ! 45� experiment (Fig. 5b), hence the higher

condition number. The angle plot for DOQSY shows a

more pathological behaviour with many minima and

maxima, indicating a high degree of correlation between

various conformations. From Figs. 4 and 5 it is expected

that the analysis of DOQSY data will be considerably

more difficult than DECODER data, especially consid-
ering that the DECODER experiment was markedly

improved by adding all spectra with bF ¼ 0 to a single

basis spectrum. The analysis of DOQSY on the other

hand cannot be improved so easily. By discretizing on

the (/;w) grid the number of basis spectra, and thus

some of the numerical problems, was already been re-

duced considerably compared to a (a; b; c) grid. The

(/;w) space spans only a small subspace of the full
(a; b; c) space. The resulting correlations are thus in-

herent to the molecular fragment of study, i.e., a di-

peptide unit.

4.2. Monte Carlo tests

Before applying the algorithm to experimental data,

we investigated its behaviour in order to (1) test the
reliability, (2) determine the resolution power, and (3)

demonstrate the conclusions from the singular value and

angle plots. Very often the resolution of an NMR ex-

periment is judged by the (optical) extent of the differ-

ence between spectra simulated with different

parameters. Although sufficient for delta function dis-

tributions, maybe, this certainly is not a good criterion

when fitting a non-trivial distribution function, because
the noise level and correlations strongly determine the

results. The response of the algorithm to both experi-

ments was tested by fitting simulated spectra and eval-

uating the output distribution function both numerically

and graphically. Input spectra were created by simulat-

ing a doubly peaked input distribution and calculating

the corresponding spectra. After adding line broaden-

ing, noise was added to either frequency or time domain
to generate an ideal Gaussian or realistic noise repre-

sentation. Twenty different noise representations were

fitted for each noise level.The mean and standard devi-

ation of the normalised squared difference v between

input and output distribution, defined as

v ¼
P

iðinputi � outputiÞ
2P

i input
2
i

; ð31Þ

were used as numerical criteria.

Fig. 6 shows a typical example of this procedure for

the DECODER experiment. The input distribution

consisted of two Gaussian peaks, with FWHH¼ 15

points, centred at (30�, 30�) and (60�, 60�), respectively.
Gaussian noise was added to the frequency domain of

the corresponding spectrum. The spectrum was gener-

ated using the kernel such that, without noise, the fitting
routine was able to recreate the spectrum perfectly. By

decreasing the signal-to-noise ratio (S=N ) a steady in-

crease in the squared difference between input and out-

put distribution is expected. This is indeed observed.

The algorithm was able to reconstruct the main features

of the input distribution even at rather high noise levels

(Fig. 6h), albeit with increasing number and intensity of

small spurious peaks.
In total 80 different input distributions were fitted for

S=N ¼ 3 to 300. From this limited number of tests it is

concluded that for the CSA values and line broadening

used here, values as typically found experimentally, the

optimum grid density was 10�. Using a resolution of

5� clearly decreased the reproducibility (using identical
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input distributions, data not shown here). With the 10�
resolution the reliability was rather homogeneous across

the parameter domain. Only in regions with small values

bF an increase was observed, with a maximum at

bF ¼ 10� (Fig. 6b). This shows that combining all basis

spectra with bF ¼ 0� into a single one has helped to

stabilize the analysis, but not solved the problem en-

tirely. If accuracy is needed in this region then a better

discretization scheme is necessary. The small spurious
peaks observed in the PDF usually do not pose prob-

lems for a quantitative interpretation of the results, if

the distribution function contains peaks that are wider
than the grid resolution. For most practical applications

this is probably not unrealistic. Extremely sharp-peaked

distributions cannot be analysed accurately using a

resolution of only 10� and may lead to strong spurious

peaks. In these tests the two peaks from the input dis-

tribution were always resolved if the distance between

Fig. 6. Typical example of the Monte Carlo tests performed to evaluate

the stability of the algorithm towards noise and various input distri-

butions for the DECODER experiment. Panel a shows the input dis-

tribution on the same grid density as the kernel, panel b shows the

dependency of the squared difference v, in blue, as a function of the

signal-to-noise ratio. The grey lines underneath are the results of nine

other input distributions and show the range of results observed in

these tests. Note that the grey line with highest squared deviation is a

typical example when bF is centred at 10�, but the two lowest grey lines
are obtained by going from 10� to 0�. Panels (c, d), (e, f), and (g, h)

show the output distributions and spectra for signal-to-noise ratios of

125, 45, and 17, respectively (marked by red arrows).

Fig. 7. Typical example of the Monte Carlo tests performed to evaluate

the stability of the algorithm towards noise and various input distri-

butions for the DOQSY experiment. Panel a shows the input distri-

bution on the same grid density as the kernel, panel b shows the

dependency of the squared difference v, in blue, as a function of the

signal-to-noise ratio. The grey lines underneath are the results of nine

other input distributions and show the range of results observed in

these tests. Panels (c, d), (e, f), and (g, h) show the output distributions

and spectra for signal-to-noise ratios of 148, 39, and 14, respectively

(marked by red arrows).
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the centres was at least two grid points, for values of
bF > 20�. The squared difference increased more than

linearly with decreasing S=N .
For the DOQSY experiment, in total 40 different in-

put distributions were tested for S=N ¼ 8 to 200. The

input distributions consisted of two Gaussian peaks,

with FWHH¼ 25 points. A typical example is shown in

Fig. 7. Comparison of Figs. 6a and 7b shows that the

normalised squared deviation v is considerably higher
for DOQSY than for DECODER, for similar S=N ,
which means that the distributions generally showed

more spurious peaks and of higher intensity. This is in

line with the respective singular-value and angle plots of

both experiments. The increased numerical problems

allowed a grid resolution of 15� only, which is relatively

low. For practical purposes in proteins, where the pos-

sible combinations (/;w) are limited by the steric hin-

drance in the resulting structures, it is, probably, not

realistic to expect peaks in the PDF that are much wider

than this. This means that especially for practically

Fig. 8. (a) Experimental 2D DECODER 90� ! 45� experiment of

oriented spider dragline silk from Nephila edulis enriched at [1-
13C]alanine, (b) corresponding fit which also included a spectrum from

a DECODER 60� ! 30� experiment and (c) the corresponding PDF.

The signal-to-noise ratio was approximately 30.

Fig. 9. (a) Experimental 2D DOQSY experiment of unoriented spider

dragline silk from Nephila edulis enriched at [1-13C]alanine, (b) corre-

sponding fit, and (c) the corresponding PDF. The signal-to-noise ratio

was approximately 33. The inherent symmetry of the DOQSY exper-

iment has been broken by including the isotropic 13Ca chemical shift as

measured by a 1DMAS spectrum into the analysis as described in [19].

Fig. 10. Direct comparison, using singular-value decay plots, of a 2D

DECODER 90� ! 45� experiment and various series of 1D spectra

taken at different sample orientations. For the 1D series spectra of

several orientations between 0� and 90� were used, employing the same
CSA values and discretization grid density as for the 2D experiment.
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attainable S=N ratios of 20–60 the spurious peaks cannot
be avoided, using the current approach. This complicates

a quantitative interpretation of the PDF. The algorithm

was always able to extract the two peaks at the right

position, though. The regions around two conformations

show highly specific spectra and can be extracted

with higher reliability: the extended conformation

ð�180�;�180�Þ and the helical ð�60�;�60�Þ. Other re-
gions, e.g., around ð�120�;�120�Þ, show extensive cor-
relations with other conformations and may under

circumstances be much more difficult to extract faithfully

[40].

For samples with comparable isotopic labelling the

S=N will in general be lower for DOQSY than for

DECODER, due to the reduced efficiency in creating

double-quantum coherences. Furthermore, steric en-

ergy as a function of the protein geometry leads to
relatively sharp distribution functions. The analysis of

DOQSY spectra is thus a much bigger challenge, even

without systematic errors caused by assumptions made

in an experiment (e.g., the orientation of the CSA

tensor in the molecular frame, the assumed peptide

geometry, the stability of the sample position in a long

DECODER experiment, distribution of CSA principal

values, etc.).

5. Experimental results

For a fibrous protein like silk, the DECODER and

DOQSY experiments allow the correlation of the ori-

entation of secondary-structure elements to the fibre

direction. This permits the study of structure–function
relationships in materials that are otherwise difficult to

study. Fig. 8 shows an experimental DECODER

90� ! 45� experiment of uni-axially oriented silk fibres

and the corresponding fitting results. The PDF shows

that the alanine C@O groups are strongly oriented to-

wards the fibre direction. From the small value for aF
that was found it follows that the C@O bond is, on

average, almost perpendicular towards the fibre. In fact,
the single distribution around ðaF ; bF Þ ¼ ð10�; 70�Þ, in-
dicates a regular b-sheet conformation oriented with the
chain direction along the fibre [20]. The PDF from the

corresponding DOQSY spectrum of unoriented silk,

shown in Fig. 9 by a single pair of torsion angles, cor-

responding to a delta-peak in the PDF, is taken to be a

confirmation that most Ala–Ala pairs are in a b-sheet
conformation. For this we use not only the fact that we
observe typical b-sheet torsion angles around ()150�,
150�), but we interpret the intensity at (�180�;�180�Þ as
signal originating from an inter-sheet dipolar coupling.

Although we try to exclude these from occurring, using

short DQ excitation times to stay in the initial rate re-

gime, such contacts cannot be avoided completely (see

also [20,40]). By combining the information from both

spectra we can conclude that the b-sheets must be highly
oriented towards the silk fibre with the chain direction

along the fibre. More details on these results can be

found in [20].

Despite the fact, that the resulting PDF from the

DOQSY experiment is rather sharpely peaked, an

analysis of the DOQSY spectra of Fig. 9 leads to un-

statisfactory results (see supporting information to [20]

at www.pnas.org).
In the analyses of DECODER and DOQSY spectra

from silk we have assumed a single set of CSA tensor

values and thus that the CSA tensor is independent of

the secondary structure. This assumption was necessary

because the exact dependence on secondary structure is

not known yet. Fitting with tensor values that deviate

from the �true� values results in spurious peaks even at

low noise levels, typically leading to a higher standard
deviation and a more irregular mean than observed in

Figs. 6b and 7b. The implications of this assumption will

be discussed, for DOQSY, in a forthcoming paper [40].

6. 2D DECODER or a series of 1D spectra?

The DOQSY and 2D DECODER experiments were
used in this work to provide complementary informa-

tion on the same silk fibroins. We may, however, think

of alternative experiments which may provide similar

information. In the following we discuss a simple al-

ternative to the 2D DECODER experiment, namely a

series of 1D spectra taken at different orientations of the

sample, with respect to the magnetic field.

Fig. 10 shows the singular value decays for kernels
consisting of various numbers of 1D spectra and also

that of a 2D DECODER 90� ! 45� experiment. The

parameter domain was the same for the 1D and 2D

spectra and we may therefore compare these results

quantitatively. The information content of a 2D DE-

CODER experiment is higher than any number of

combined 1D spectra can provide. A minimum of at

least seven orientations is required in a series of 1D
spectra to obtain a sufficient information content level,

although some numerical instabilities were still ob-

served. Using less orientations results in severely in-

creased instability. As shown for both DECODER and

DOQSY, the noise level plays a very important role in

the reliability of the analysis. Assuming that the total

acquisition time for the 1D spectra is equal to that of the

2D DECODER experiment, for our particular experi-
ment the signal to noise is considerably higher in the 1D

spectra and the analysis should be more reliable. Nu-

merical tests indeed showed lower and more consistent

squared deviations between input and output PDF for a

series of 1D spectra (data not shown). Measuring a set

of approximately 10 1D spectra thus is a good alterna-

tive to the mechanically more-challenging 2D DE-
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CODER spectrum, if the measuring time is taken
equally long. Note though that for a broad spectrum the

phase and baseline corrections can, in our experience, be

better separated in 2D spectra than in 1D spectra, which

reduces systematic errors.

7. Conclusions

Extracting distribution functions for structural pa-

rameters from NMR spectra is challenging and care

must be taken in order not to over- or under-interpret

the experimental results. Using two practically relevant

examples, we have shown that well-known analysis

strategies, for solving two-dimensional Fredholm inte-

gral equations, can be successfully applied in the con-

text of multi-dimensional NMR. By combining three
regulatory tools, optimised discretization, non-nega-

tivity, and Tikhonov regularization, we are able to

stabilise the inherent numerical problems sufficiently to

extract structural information from 2D NMR spectra.

By using singular values and correlation between basis

spectra, an experiment may be assessed, and possibly

improved, such that its information content is opti-

mum. Through numerical testing we can obtain a clear
view of the attainable resolution in the analysis,

something which is typically disguised, in algorithm-

given error bars, by the ill-posed nature of a problem.

The algorithm used, shown to be stable and fast in

previous applications, works well with the chosen reg-

ulatory approach in the context of 2D integral equa-

tions and 2D NMR.

The concepts presented here may also, in principle, be
applied to any higher-dimensional integral equation

and/or nD NMR spectrum, for example by combining

DECODER and DOQSY into a single 3D experiment

that correlates dipeptide units towards a macroscopic

director. The numerical problems rapidly increase with

higher dimensionality in parameter space.

The experiments studied in this paper concern static

lineshapes of C@O tensors in a semi-crystalline fibrous
silk, i.e., the spectra had wide lines, low resolution,

and low signal-to-noise ratios. For S=N ¼ 8 to 200,

with DOQSY the algorithm is in all cases able to re-

construct a doubly peaked input distribution, to a

level where the main peaks can clearly be distin-

guished at the proper positions, and with similar

separation level, as the input distribution. Small spu-

rious peaks generally occur in the output distribution,
even at low noise levels, which makes the relative in-

tensities of peaks difficult to interpret quantitatively.

The DECODER experiment will in practise be less

sensitive to such spurious peaks, and thus more reli-

able, as in most applications the underlying distribu-

tion function will be broader than for the DOQSY

experiment. Indeed, for similar S=N significantly

higher reproducibility was found for DECODER than
for DOQSY. Note, however, that the two experiments

provide complementary information. Grid resolutions

of 10� and 15� were attainable for DECODER and

DOQSY, respectively.

We believe that the data evaluation presented here

can also be applied to other NMR experiments, in

particular also to MAS experiments.
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Appendix A

We define a discrete two-dimensional grid ½ai; bj�
across the parameter domain with i ¼ 1; . . . ; ðna � 1Þ
and j ¼ 1; . . . ; ðnb � 1Þ. From Eqs. (18) and (19) we then

obtain

~ssk ¼
Xnb�1

j¼1

Xna�1

i¼1
sijðxð1Þ

k ;xð2Þ
k Þ; ðA:1Þ

where sijðxð1Þ
k ;xð2Þ

k Þ is the part of the experimental

spectrum originating from interval ½½ai; aiþ1�; ½bj; bjþ1��
and is given by

sijðxð1Þ
k ;xð2Þ

k Þ

¼
Z bjþ1

b¼bj

Z aiþ1

a¼ai

gða; bÞKðxð1Þ
k ;xð2Þ

k ; a; bÞdadb: ðA:2Þ

Using the piecewise approximation of g according to

Eqs. (22) and (23) we may rewrite this as

sijðxð1Þ
k ;xð2Þ

k Þ ¼ ~ggijs
ð1Þ
ij þ ~ggiþ1;js

ð2Þ
ij þ ~ggi;jþ1s

ð3Þ
ij þ ~ggiþ1;jþ1s

ð4Þ
ij

ðA:3Þ
with

sðrÞij ¼
Z bjþ1

b¼bj

Z aiþ1

a¼ai

cðrÞij ða; bÞKðx
ð1Þ
k ;xð2Þ

k ; a; bÞdadb;

ðA:4Þ
r ¼ 1; . . . ; 4, i ¼ 1; . . . ; na, and j ¼ 1; . . . ; nb. Note that

this step involves going from ðna � 1Þ � ðnb � 1Þ coef-
ficients for �ggða; bÞ to na � nb coefficients ~gg, without
changing the number of independent basis spectra! We

can then rewrite Eq. (A.1) as

~ssk ¼
Xnb�1

j¼1

Xna�1

i¼1
~ggijs

ð1Þ
ij

h
þ ~ggiþ1;js

ð2Þ
ij þ ~ggi;jþ1s

ð3Þ
ij þ ~ggiþ1;jþ1s

ð4Þ
ij

i
;

ðA:5Þ
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which can be rewritten as

~ssk ¼
Xnb�1

j¼1

Xna�1

i¼1
~ggijs

ð1Þ
ij þ

Xnb�1

j¼1

Xna

i¼2
~ggijs

ð2Þ
i�1;j þ

Xnb

j¼2

	
Xna�1

i¼1
~ggijs

ð3Þ
i;j�1 þ

Xnb

j¼2

Xna

i¼2
~ggijs

ð4Þ
i�1;j�1: ðA:6Þ

Eq. (24) is then obtained by collecting the appropriate

terms of sðrÞij into Kijðxð1Þ
k ;xð2Þ

k Þ.
The 2D DECODER experiment, is fully described by

the parameter ranges aF ¼ ½0�; 90�� and bF ¼ ½0�; 90��,
due to the fibre symmetry of the silk samples. For this or

any other experiment with non-cyclic parameter do-

mains the Kijðxð1Þ
k ;xð2Þ

k Þ are defined as

K1;1ðxð1Þ
k ;xð2Þ

k Þ ¼ sð1Þ1;1;

K1;nb
ðxð1Þ

k ;xð2Þ
k Þ ¼ sð3Þ1;nb�1;

Kna;1ðx
ð1Þ
k ;xð2Þ

k Þ ¼ sð2Þna�1;1;

Kna;nb
ðxð1Þ

k ;xð2Þ
k Þ ¼ sð4Þna�1;nb�1;

Ki;1ðxð1Þ
k ;xð2Þ

k Þ ¼ sð1Þi;1 þ sð2Þi�1;1; i ¼ 2; . . . ; ðna � 1Þ;
K1;jðxð1Þ

k ;xð2Þ
k Þ ¼ sð1Þ1;j þ sð3Þ1;j�1; j ¼ 2; . . . ; ðnb � 1Þ;

Kna;jðx
ð1Þ
k ;xð2Þ

k Þ ¼ sð2Þna�1;j þ sð4Þna�1;j�1; j ¼ 2; . . . ; ðnb � 1Þ;

Ki;nb
ðxð1Þ

k ;xð2Þ
k Þ ¼ sð3Þi;nb�1 þ sð4Þi�1;nb�1; i ¼ 2; . . . ; ðna � 1Þ;

Ki;jðxð1Þ
k ;xð2Þ

k Þ ¼ sð1Þi;j þ sð2Þi�1;j þ sð3Þi;j�1 þ sð4Þi�1;j�1;

i ¼ 2; . . . ; ðna � 1Þ; j ¼ 2; . . . ; ðnb � 1Þ: ðA:7Þ

The total number of independent coefficients is then

na � nb with na ¼ 90�=resolutionþ 1 and nb ¼ 90�=
resolutionþ 1, in case of 2D DECODER.

For an experiment with a cyclic parameter domain

(e.q., with DOQSY where / ¼ ½�180�; 180�� and

w ¼ ½�180�; 180��Þ the Ki;jðxð1Þ
k ;xð2Þ

k Þ are defined as

K1;1 xð1Þ
k ;xð2Þ

k

� �
¼ sð1Þ1;1 þ sð2Þn/�1;1 þ sð3Þ1;nw�1 þ sð4Þn/�1;nw�1;

Ki;1ðxð1Þ
k ;xð2Þ

k Þ ¼ sð1Þi;1 þ sð2Þi�1;1 þ sð3Þi;nw�1 þ sð4Þi�1;nw�1;

i ¼ 2; . . . ; ðn/ � 1Þ;

K1;jðxð1Þ
k ;xð2Þ

k Þ ¼ sð1Þ1;j þ sð2Þna�1;j þ sð3Þ1;j�1 þ sð4Þna�1;j�1;

j ¼ 2; . . . ; ðnw � 1Þ;

Ki;jðxð1Þ
k ;xð2Þ

k Þ ¼ sð1Þi;j þ sð2Þ1�1;j þ sð3Þi;j�1 þ sð4Þi�1;j�1;

i ¼ 2; . . . ; ðn/ � 1Þ; j ¼ 2; . . . ; ðnw � 1Þ: ðA:8Þ

The total number of independent coefficients is then

ðn/ � 1Þ � ðnw � 1Þ with n/ ¼ 360�=resolutionþ 1 and

nw ¼ 360�=resolutionþ 1, in case of DOQSY.

These derivations do not include the removal of

symmetry-related basis spectra within the given param-

eter domains, which may lead to a further reduction of

coefficients. Note, also for the numerical integration of

sðrÞij within each interval ½½ai; aiþ1�; ½bj; bjþ1�� an appro-
priate number of steps must be selected. Besides calcu-

lation time considerations regulatory effects may

become relevant in some cases. Unreasonable resolution

within the intervals will invariably destabilize the

problem more and even the choice of the integration

scheme can influence the results.

References

[1] P.C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems,

SIAM, Philadelphia, 1998.

[2] W. Menke, Geophysical Data Analysis: Discrete Inverse Theory,

Academic Press, San Diego, 1989.

[3] I.J.D. Craig, J.C. Brown, Inverse Problems in Astronomy, Adam

Hilger, Bristol, UK, 1986.

[4] R. Barakat, G. Newsam, Radio Sci. 19 (1984) 1041–1056.

[5] E. Sternin, M. Bloom, A.L. Mackay, J. Magn. Res. 55 (1983) 274–

282.

[6] K.P. Whittall, E. Sternin, M. Bloom, A.L. Mackay, J. Magn. Res.

84 (1989) 64–71.

[7] H. Sch€aafer, B. Maedler, F. Volke, J. Magn. Res. A 116 (1995)

145–149.

[8] H. Sch€aafer, B.Madler, E. Sternin, Biophys. J. 74 (1998) 1007–1014.

[9] E. Sternin, H. Sch€aafer, I.V. Polozov, K. Hawrisch, J. Magn. Res.

149 (2001) 110–113.

[10] H. Sch€aafer, R. Stannarius, J. Magn. Res. B 106 (1995) 14–23.

[11] J. Winterhalter, D. Maier, D.A. Grabowski, J. Honerkamp, S.

M€uuller, C. Schmidt, J. Chem. Phys. 110 (1999) 4035–4046.

[12] F.G. Vogt, D.J. Aurentz, K.T. M€uuller, Mol. Phys. 95 (1998)

907–919.

[13] H. Sch€aafer, H. Bauch, Phys. Lett. A 199 (1995) 93–98.

[14] D.A. Grabowski, J. Honerkamp, J. Chem. Phys. 96 (1992) 2629–

2632.

[15] J.W. Zwanziger, Solid State NMR 3 (1994) 219–229.

[16] F. Angeli, T. Charpentier, P. Faucon, J.-C. Petit, J. Phys. Chem. B

103 (1999) 10356–10364.

[17] M. Utz, J. Chem. Phys. 109 (1998) 6110–6124.

[18] Y.-Q. Song, L. Venkataramanan, M.D. H€uurlimann, M. Flaum, P.

Frulla, C. Straley, J. Magn. Res. 154 (2002) 261–268.

[19] J.D. van Beek, L. Beaulieu, H. Sch€aafer, M. Demura, T. Asakura,

B.H. Meier, Nature 405 (2000) 1077–1079.

[20] J.D. van Beek, S. Hess, F. Vollrath, B.H. Meier, Proc. Natl. Acad.

Soc. USA 99 (2002) 10266–10271.

[21] J. Hadamard, Lectures of the Cauchy Problem in Linear Partial

Differential Equations, Yale University Press, New Haven, 1923.

[22] C.L. Lawson, R.J. Hanson, Solving Least Squares Problems,

Prentice-Hall, Englewood Cliffs, NJ, 1974.

[23] A.N. Tikhonov, V.Y. Arsenin, Solutions of Ill-Posed Problems,

Wiley, New York, 1977.

[24] H.W. Engl, M. Hanke, A. Neubacher, Regularization of Inverse

Problems, Kluwer Academic Publishers, Dordrecht, 1996.

[25] J. Honerkamp, J. Weese, Cont. Mech. Thermodyn. 2 (1990) 17–30.

[26] J. Weese, Comput. Phys. Commun. 69 (1992) 99–111.

[27] P.M. Henrichs, Macromolecules 20 (1987) 2099–2112.

[28] K. Schmidt-Rohr, M. Hehn, D. Schaefer, H.W. Spiess, J. Chem.

Phys. 97 (1992) 2247–2262.

[29] K. Schmidt-Rohr, B.F. Chmelka, H.W. Spiess, Macromolecules

26 (1993) 2282–2296.

[30] R.H. Lewis, H.W. Long, K. Schmidtrohr, H.W. Spiess, J. Magn.

Reson. A 115 (1995) 26–34.

[31] K. Schmidt-Rohr, Macromolecules 29 (1996) 3975–3981.

[32] K. Schmidt-Rohr, W. Hu, N. Zumbulyadis, Science 280 (1998)

714–717.

156 J.D. van Beek et al. / Journal of Magnetic Resonance 162 (2003) 141–157



[33] G.H. Golub, C. Rheinsch, Numer. Math. 14 (1970) 403.

[34] A. Kielbasinski, H. Schwetlick, Numerische Lineare Algebra,

VEB Deutscher Verlag der Wissenschaften, Berlin, 1988.

[35] D.M. Brink, G.R. Satchler, Angular Momentum, third ed.,

Clarendon Press, Oxford, 1993.

[36] R.E. Stark, L.W. Jelinski, D.J. Ruben, D.A. Torchia, R.G.

Griffin, J. Magn. Reson. 55 (1983) 266–273.

[37] T.G. Oas, C.J. Hartzell, F.W. Dahlquist, G.P. Drobny, J. Am.

Chem. Soc. 109 (1987) 5962–5966.

[38] T.G. Oas, C.J. Hartzell, T.J. McMahon, G.P. Drobny, F.W.

Dahlquist, J. Am. Chem. Soc. 109 (1987) 5956–5962.

[39] Q. Teng, M. Iqbal, T.A. Cross, J. Am. Chem. Soc. 114 (1992)

5312–5321.

[40] J.D. van Beek, B.H. Meier, manuscript in preparation.

[41] Protein Data Bank, www.rcsb.org.

[42] S. Smith, T. Levante, B.H. Meier, R.R. Ernst, J. Magn. Reson. A

106 (1994) 75–105.

[43] V.B. Cheng, H.H. Suzakawa Jr., M. Wolfsberg, J. Chem. Phys. 59

(1973) 3992–3999.

[44] H. Sch€aafer, E. Sternin, R. Stannarius, M. Arndt, F. Kremer, Phys.

Rev. Lett. 76 (1996) 2177–2180.

[45] P. Bloss, A.S. DeReggi, H. Sch€aafer, Phys. Rev. B 62 (2000) 8517–

8530.

[46] W.L. Earl, D.L. VanDerHart, J. Magn. Res. 48 (1982) 35–

54.

[47] MatNMR is a toolbox for processing NMR/EPR data under

MATLAB and can be downloaded freely at http://www.nmr.ethz.

ch/matnmr.

[48] V.A. Mozorov, Methods for Solving Incorrectly Posed Problems,

Springer, New York, 1984.

J.D. van Beek et al. / Journal of Magnetic Resonance 162 (2003) 141–157 157

http://www.rcsb.org
http://www.nmr.ethz.ch/matnmr
http://www.nmr.ethz.ch/matnmr

	Inverse methods in two-dimensional NMR spectral analysis
	Introduction
	Theory
	Defining inverse problems and ill-posedness
	Analysis and evaluation of the ill-posed problem
	Singular values
	Correlations

	Regularization
	Discretization
	Truncation
	Smoothness
	Non-negativity and other

	Determining the optimum degree of regularization
	Two-dimensional Fredholm equations of the first kind
	Solution concept and discrete implementation
	Experiment 1: 2D DECODER
	Experiment 2: DOQSY

	Materials and methods
	Example 1
	Example 2
	Analysis
	NMR spectra

	Analysing the experiments
	Kernels
	Monte Carlo tests

	Experimental results
	2D DECODER or a series of 1D spectra?
	Conclusions
	Acknowledgements
	Appendix A
	References


